A hierarchical fuzzy-neural multi-model: an application for a mechanical system with friccion identification and control

نویسندگان

  • Ieroham S. Baruch
  • Jose-Luis Olivares
  • Federico Thomas
چکیده

A Recurrent Trainable Neural Network (RTNN) with a two layer canonical architecture and a dynamic Backpropagation learning method are applied for identification and control of complex nonlinear mechanical plants. The paper uses a Fuzzy-Neural Hierarchical Multi-Model (FNHMM), which merge the fuzzy model flexibility with the learning abilities of the RNNs. The paper proposed the application of two control schemes, which are: a trajectory tracking control by an inverse FNHMM and a direct adaptive control, using the states issued by the identification FNHMM. The proposed control methods are applied for a mechanical plant with friction system control, where the obtained comparative results show that the control using FNHMM outperforms the fuzzy and the neural single control.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A HIERARCHICAL FUZZY-NEURAL MULTI-MODEL An application for a mechanical system with friccion identifcation and control

A Recurrent Trainable Neural Network (RTNN) with a two layer canonical architecture and a dynamic Backpropagation leamng method are applied for identification and control of complex nonlinear mechanical plants. The paper uses a Fuzzy-Neural Hierarchical Multi-Model (FNHMM), which merge the fuzzy model flexibility with the learning abilities of the RNNs. The paper proposed the application of two...

متن کامل

Multi-Criteria Risk-Benefit Analysis of Health Care Management

Abstract Purpose of this paper: The objectives of this paper are two folds: (1) utilizing hierarchical fuzzy technique for order preference by similarity to ideal solution (TOPSIS) approach to evaluate the most suitable RFID-based systems decision, and (2) to highlight key risks and benefits of radio frequency identification technology in healthcare industry. Design/methodology/approach: R...

متن کامل

Model-based Approach for Multi-sensor Fault Identification in Power Plant Gas Turbines

In this paper, ‎the multi-sensor fault diagnosis in the exhaust temperature sensors of a V94.2 heavy duty gas turbine is presented‎. ‎A Laguerre network-based fuzzy modeling approach is presented to predict the output temperature of the gas turbine for sensor fault diagnosis‎. Due to the nonlinear dynamics of the gas turbine, in these models the Laguerre filter parts are related to the linear d...

متن کامل

Intelligent identification of vehicle’s dynamics based on local model network

This paper proposes an intelligent approach for dynamic identification of the vehicles. The proposed approach is based on the data-driven identification and uses a high-performance local model network (LMN) for estimation of the vehicle’s longitudinal velocity, lateral acceleration and yaw rate. The proposed LMN requires no pre-defined standard vehicle model and uses measurement data to identif...

متن کامل

A TS Fuzzy Model Derived from a Typical Multi-Layer Perceptron

In this paper, we introduce a Takagi-Sugeno (TS) fuzzy model which is derived from a typical Multi-Layer Perceptron Neural Network (MLP NN). At first, it is shown that the considered MLP NN can be interpreted as a variety of TS fuzzy model. It is discussed that the utilized Membership Function (MF) in such TS fuzzy model, despite its flexible structure, has some major restrictions. After modify...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005